Towards a new infrastructure supporting
interoperability of information systems in development:
the Information System upon Information Systems

Thang LE DINH

University of Geneva, CUI, 24 General Dufour,
CH-1211 Geneva 4, Switzerland

Thang.LeDinh@cui.unige.ch

Abstract. This paper addresses the issue of interoperability of information sys-
tems (IS) in development. Accordingly, an Information System upon Informa-
tion Systems (ISIS) is proposed as a new infrastructure to manage and coordi-
nate information resources used in IS development process. The proposed ap-
proach considers that conceptual specifications of information systems are the
fundamental constituents of information resources; and therefore, the first chal-
lenge is to manage and coordinate conceptual specifications. Correspondingly,
the conceptual framework for building and managing the ISIS is presented, in-
cluding how to identify, represent, manage and coordinate conceptual specifica-
tions.

1. Introduction

Nowadays, information systems (IS) have performed increasingly important roles
in both business and governmental sectors. However, after a long period of IS devel-
opment, most organizations have supported by various heterogeneous applications,
software, solutions as well as development tools, which are not designed to coordinate
with the others.

As a matter of fact, there is a tendency to require more interoperability of systems
and tools used in IS development process. This requirement contains numerous poten-
tial advantages, but also leads to certain challenges in the capacity to manage effec-
tively such environments.

Unfortunately, providing interoperability of systems and tools at the Informatics
level is not sufficient because systems and tools weren’t designed to interoperate at
this level [1]. For this reason, our research focuses on providing interoperability at the
Information level, which represents the semantic content of information, independent
with technologies and choices of implementation.

The objective of this paper is to propose a typical information system that supports
interoperability of information systems in development. This information system is
called the Information System upon Information Systems (ISIS) [4]. The ISIS, which

supports interoperability of information systems in development, will participate in the
IS infrastructure hierarchy of each enterprise as a new infrastructure and will coexist
with other infrastructures.

On the other hand, we also argue that conceptual specifications are bound to play
an important role in the deliverables of the IS development process.

Indeed, specifications have been considered as important information resources that
might cover long-term vision of IS. However, once information systems operated,
these resources often felt into oblivion. There weren’t so much effort to keep these
information resources up-to-date.

In our approach, specifications, especially conceptual specifications, are used to
capture the knowledge about information systems and used to support interoperability
of information systems at the Information level.

Furthermore, most technical specifications are the implementations of conceptual
specifications. Therefore, once the interoperability of conceptual specifications is
settled at the Information level, the interoperability of the technical specifications and
business data at the Informatics level will be solved accordingly.

Consequently, this paper continues with the framework for building and managing
the ISIS, including how to identify, represent, manage and coordinate conceptual
specifications of information systems.

The remaining of this paper is proposed as the followings: Section 2 presents how
to identify different categories of conceptual specifications. Section 3 discusses about
the representation of conceptual specifications. Section 4 concerns with the manage-
ment of conceptual specifications. Section 5 describes how to coordinate specifica-
tions within and between development projects. Section 6 comes to end with conclu-
sion and future works.

2. Identification of conceptual specifications

This paper uses the M7 method [2, 3, 4] as the tool for representing the framework.
The M7 method proposes several models to represent different aspects of an IS such
as the Static, Dynamic, and Integrity rule aspects.

The Static aspect represents the structure of information; the Dynamic aspect repre-
sents the transformation of information; and the Integrity aspect represents the coher-
ence of information.

2.1 Conceptual specifications of the Static aspect

Conceptual specifications of the Static aspect describe what type of information ex-
ists, their structures as well as their interrelationships. There are the categories of
conceptual specifications of the Static aspect such as Atomic-class, Tuple-class, Hy-
perclass, Attribute, Key, and Sub-hyperclass.

An object type and a set of objects of this type define a class. There are three kinds
of classes: Atomic-class, Tuple-class and Hyperclass:

e An atomic-class is defined as a primitive class, which is indecomposable.
Objects of an atomic-class have a particular characteristic: their identifier
is also their value.

e A tuple-class contains objects having the same structure and the same be-
haviour. A structure of a tuple-class is characterized by a set of attributes.
The behaviour of a tuple-class is represented by a set of methods.

e A hyperclass is a subset of classes that all connected by navigation links
to a key class without ambiguity [5]. We can work on a hyperclass as a tu-
ple-class. Consequently, a tuple-class is a specialisation of a hyperclass.

The interrelationships between the classes’ concepts lead to other concepts such as
Attribute, Key and Sub-hyperclass:
e An attribute of a hyperclass is a function that corresponds to every object
of this hyperclass to a set of objects of the other class.
e A key of a hyperclass is defined by a set of special attributes can be used
to distinguish one object from other objects in the same hyperclass.
® A hyperclass can define its sub-hyperclasses. The interpretation of a sub-
hyperclass is exactly the set of all identifiers of the interpretation of its su-
per-hyperclass for which the specialisation condition evaluates to be

29

“true”.

2.2 Conceptual specifications of the Dynamic aspect

In the M7 method, there are two levels of behaviour: Local behavior defined as the
behaviour of objects of a hyperclass, and Global behavior defined as the behavior of
the IS or a part of IS. The categories of conceptual specifications of the Dynamic
aspect are Dynamic state, Method, Event, and Process.

The local behaviour is represented by the concepts of Dynamic State and Method:
¢ Dynamic states of an object are modes or situations during which certain
methods are “enabled” and other methods are “disabled”.
e A method of a hyperclass is used to transit between the dynamic states of
the objects of this hyperclass. In a clear manner, a method transfers a set
of dynamic states to another set of dynamic states of a hyperclass.

On the other hand, the global behaviour is represented by the concepts of Event and
Process:
¢ Event is remarkable phenomena outside of the information system that
may provoke a change of its dynamic states. In fact, the event structure
helps to define the interface of the IS with its environments.
e A process is a feedback of the IS to the occurrence of an event. In fact, a
process performs a transformation of a set of dynamic states of the IS.

2.3 Conceptual specifications of the Integrity rules aspect

The categories of conceptual specifications of the Integrity rule aspect are Integrity
rule, Scope, Primitive and Risk.

In fact, the Integrity rule aspect includes the concepts such as Integrity Rule and
Primitive as well as their interrelationships such as Scope and Risk [6]:

Integrity rules (IR) of an IS often represent the business rules of an or-
ganization. An IR actually is a logical condition defined over tuple-classes
that can be specified formally and verified by processes or methods.
Scopes of an IR represent the context of an IR including a set of tuple-
classes on which the IR has been defined.

A primitive is a basic operation on a tuple-class such as such Create, Up-
date and Delete. The execution of a primitive may violate the validation
of an IR.

Risks are the possibilities of suffering the incoherence of information. In
principal, a risk is defined on a scope and a primitive. In particular, espe-
cially in the case of the Update primitive, it is indispensable to specify the
related attributes of a risk.

3. Representation of conceptual specifications

This section concerns with how to represent the structure, the behavior and the co-
herence of conceptual specifications.

3.1 Structure of conceptual specifications

In the ISIS, a conceptual specification is represented by an object. Each category of
conceptual specifications is represented by a hyperclass of the ISIS. Hyperclasses of
the ISIS are called generic hyperclasses.

Table 1 proposes the generic hyperclasses.

Table 1: Generic hyperclasses.

Aspect Generic hyper- | Key class Constituent classes
class
Atomic-class Atomic-class | Category
Static aspect | Hyperclass Hyperclass | Category, Tuple-class, Sub-hyperclass,
Attribute, and Key
Attribute Attribute Category, and Hyperclass
Key Key Category, Hyperclass, and Attribute
Dynamic state Dynamic Sub-Hyperclass, and Hyperclass
state
Dynamic aspect | Method Method Dynamic state, Sub-hyperclass, and Hy-
perclass
Event Event
Process Process Event, Hyperclass, and Method
Integrity rule Integrity rule | Integrity rule, Scope, and Risk
Integrity rule | Scope Scope Integrity rule, Tuple-class, and Hyperclass
aspect Risk Risk Scope, Primitive and Attribute

Notes: Category tuple-class is the generalization of Atomic-class tuple-class and
Hyperclass tuple-class. An object of Category tuple-class can be an object of Afomic-
class tuple-class or an object of Hyperclass tuple-class.

For illustrating, the next example presents the Hyperclass generic hyperclasses.

Example: Structure of Hyperclass specifications.
Hyperclass hyperclass is the generic hyperclass of the ISIS that represents the

specifications of hyperclasses of information systems.

Hyperclass hyperclass is defined over
its key class: Hyperclass tuple-class.

Objects of Hyperclass tuple-class are
objects of Category tuple-class. In the
same manner, objects of Sub-hyperclass
and Tuple-class tuple-classes are also
objects of Hyperclass tuple-class and
therefore objects of Category tuple-class.

From an object of Hyperclass, one
can navigate to an object of Sub-
Hyperclass tuple-class (using its sub-
hyperclass-of attribute), a set of objects
of Attribute tuple-class (using the origin-
Hyperclass attribute), and a set of ob-
jects of Key tuple-class (using the key-of-
Hyperclass attribute).

Category =
oD OID

Category Name
Name

IS-A
hyperclass

Attribute
OID

origin

Atomic-class

O Tuple-class

AN specilisation

Specialization
2oNndition sy

Key-class of
a hyperclass

Figure 1: Structure of Hyperclass generic
hyperclass.

3.2 Coherence of conceptual specifications

The coherence of conceptual specifications is guaranteed by the integrity rules of
the ISIS. In our framework, the integrity rules of the ISIS are called generic integrity
rules. Indeed, these integrity rules concerns with the conformity of conceptual speci-
fications.

An object of a generic hyperclass of the ISIS is said: “to be conformed” if it is sat-
isfied all the generic integrity rules. There are two types of generic integrity rules:
validity and completeness rules.

The concept of validity rule is actually inherent to the concept of “integrity rule” at
the meta-model level. Indeed, there is a set of rules coordinating with the meta-model
to control the validity of every object of generic hyperclasses.

When designer modifies an object of a generic hyperclass, this modification may
violate the validity rules, which are concerned about this object. If the modification
violates one of those rules, the object is brought into the invalid state. On the contrary,
it is in the valid state.

For instance, there is a validity rule related to objects of Hyperclass generic hyper-
class such as: “The dependent constituents of a hyperclass such as its attributes, keys,
and sub-hyperclasses must be valid”.

The concept of completeness rule is related to the perception about the organiza-
tion and the real world that designers have to realize. In fact, the decision of designers
about the completeness of a conceptual specification depends on the finish of works
and the stability of the constituents of the real world, which are modelled with that
specification. Therefore, designers who are responsible for managing completeness
rules will decide their completeness status.

For example, “a hyperclass must have all its attributes” is a completeness rule. In
this case, the designer, who decides whether all the “necessary” attributes of that hy-
perclass are already specified or not, will specify its completeness status.

3.3 The behaviour of conceptual specifications

The behaviour of conceptual specification is represented by the generic dynamic
states of conceptual specifications and the corresponding object life cycles.

A generic dynamic state is a dynamic state of the ISIS that is common for all the
object life cycles of categories of conceptual specifications. In other words, those
dynamic states exist in all the object life cycles.

We propose the following dynamic states: Ready to initialize, Initialized, Valid, In-
valid, Completed, Uncompleted, Implemented, and Unimplemented.

Firstly, every object of a generic hyperclass, which represents a conceptual specifi-
cation, has two dynamic states: Ready to initialize before its initiation and Initialized
after its initiation.

Secondly, when an object is initialized, it is said: “to be conformed” if it is satisfied
all the conformity rules, including validity and completeness rules.
Therefore, the next dynamic states are proposed:
e Valid / Invalid to state that an object is satisfied /dissatisfied all the con-
cerned validity rules;
¢ Completed / Uncompleted to state that an object is satisfied /dissatisfied
all the concerned completeness rules.
Finally, the dynamic states to indicate that an object of a generic hyperclass is im-
plemented (or not) are also necessary. Consequently, the two generic dynamic states:
Implemented and Unimplemented are also proposed.

In the ISIS approach, the development process of a conceptual specification can be
generally represented by a generic object life cycle. A method of the ISIS that may
change the generic dynamic states of an object is called a generic method. Figure 2
presents the generic object life cycle using the Petri-net [7].

An object before its initiation is in the Ready fo initialize state. After its initiation
(using Initialize() method), the object is in the /nitialized state and ready for process-
ing by other methods. For instance, it is ready to be queried by the Query() method.
When an object is created, it is also in the Invalid, Uncompleted and Unimplemented
states.

A set of Specify() generic methods can be used to bring an object from the Invalid
state into the Valid state or vice versa. Accordingly, a set of Create dependent() ge-
neric methods can be used to bring an object from the Uncompleted state into the
Completed states. On the other hand, the Delete_dependent() generic method may
bring an object return to the Uncompleted state.

An object can be implemented Ready o nfisize
when it is in Valid state. When an - /”O*\ —
object is in the Unimplemented fritelzed) e
state, there are two possibilities: o
e This object is valid but
has not yet completed,
however, the responsible
person decides to imple-
ment it. In that case, an

‘ Initialized

Conceptual

specificatiol

Uncompleted-
implement() method
change its state into Jfm- '
plemented; Development of a
° ThlS object iS Valid and conceptual specification
Completed, and then a e
. Notes: Uncompleted
Completed-implement() © oymamcsme implement(

Completet
implement()

method changes its state
into Implemented.

== Method

Figure 2: A generic object life cycle.

Moreover, when an object is in the /mplemented state, there are two possibilities:

e This object may be completed or not yet completed, therefore a Completed-
implement() method or Uncompleted-implement() method can be executed.
Those methods do not change its state;

e There is a need for an evolution. In that case, the Evolve() method can per-
form the evolution primitives. This type of methods does not change the state
of object.

Finally, an object in the Initialized state, probably implemented or not imple-
mented, can be finalized by using the Finalize() method. This method brings the ob-
ject return to the Ready to initialize state.

4. Management of conceptual specifications

This section firstly present how the ISIS store conceptual specifications, then con-
tinues with the overall architecture of the ISIS.
4.1 Organizational aspect of the ISIS

An excerpt of the meta-model of the organizational aspect of the ISIS presents how
the ISIS store and manage the conceptual specifications (Figure 3).

sub- consume
activity-of Information
resources
produces

constfuctedBy

includes Specification

Notes:
RN Atomic
¢T> Ao
Tuple class
Concoptual @ ;D p
/ Mono-value

Responsibility
zone

between

attribute

implemented /' Multivalue
by attribute

Figure 3: Meta-model of the Organizational aspect of the ISIS.

Concerning the levels of abstraction, there are two types of specifications: Concep-
tual specification and Technical specifications. Technical specifications represent the
internal design of the information system, turned to achieve reasonable performance
on the target platform. A conceptual specification can be implemented in one or sev-
eral technical specifications.

An information resource is a package of specifications that are consumed or pro-
duced by the activities of the development process.

An activity is defined as a unit of work that may produce or consume certain infor-
mation resources. Activities can be nested: one activity can expand into several activi-
ties at a lower level. An activity can be performed by a set of roles and can be watched
by another set of roles.

Roles represent a set of necessary responsibilities, authorities and capabilities to
perform the execution of activities or to watch (monitor) the execution of activities
performed by the other roles.

A contributor is a person that participates in the IS development process. A con-
tributor may take on several roles.

A responsibility zone (RZ) is a part of working environment that may carry out an
IS development project. A RZ includes a set contributors associated together.

Concerning the interest of RZs, there are two specializations of specification: Pri-
vate specification and Common specification. A private specification is belonged to
only one RZ. Meanwhile, a common specification is overlapped between several RZs.
Consequently, a common specification can be referred by several private specifica-
tions.

4.2 Overall architecture of the ISIS

Integration layer Coordination layer Representation layer

SPECIFICATION
INTEGRATION
service
component

INTRA-IS NAVIGATOR
COORDINATION service

service component
component

SERVICE
INTEGRATION
service
component

ADMINISTRATOR
service
component

COORDINATION
service
component

Development ; ; ; ISIS users
tools

h
=ie
=ile =il

Private workspace Common workspace

8 Repository 8

Figure 4: Overall architecture of the ISIS.

Figure 4 introduces the overall architecture of the ISIS. In the ISIS, specifications
are stored in the ISIS repository. This repository includes two workspaces: Private
workspace and Common workspace. Private workspace stores private specifications
of responsibility zones. Meanwhile, common workspace stores common specifica-
tions.

On the other hand, there are three layers that provide facilities to represent, vali-
date, manage, integrate and coordinate specifications such as the Integration, Coordi-
nation and Representation layers.

Integration layer provides the facilities to integrate specifications stored in devel-
opment tools and specifications stored in the ISIS. This layer includes:

e Specification-integration service component: providing facilities to integrate
specifications stored in tools with specifications stored in the ISIS;

e Service-integration service component: including facilities to integrate ser-
vices provided by tools and services provided by the ISIS.

Representation layer provides the facilities so that ISIS users, developers and ad-
ministrators can work with specifications stored in the ISIS repository, including:
® Navigator service component: providing the interface to allow the ISIS users
to specify and complete the specifications;
® Administrator service component. providing facilities to support the ISIS
administrator.

Coordination layer provides the facilities to support interoperability of specifica-
tions within and between responsibility zones. This layer includes:
e [ntra-IS coordination service component: supporting interoperability of pri-
vate specifications of the same RZ;
e [nter-IS coordination service component: supporting interoperability of
common specifications of different RZs.

5. Coordination of conceptual specifications

In the following, we discuss about various situations of coordination and illustrate
how an ISIS may support different situations of coordination. Indeed, there are two
general situations of coordination: Intra-IS coordination and Inter-IS coordination.

Intra-1S coordination is the coordination of private conceptual specifications man-
aged by a same responsibility zone. Meanwhile, Inter-IS coordination is the coordina-
tion of common conceptual specifications shared by different responsibility zones.

5.1 Intra-IS coordination

In the ISIS, the development process of a conceptual specification is represented by
an object life cycle of the corresponding generic hyperclass. Therefore, the interde-
pendencies between conceptual specifications can be analyzed based on the interde-
pendencies of dynamic states of those life cycles.

In fact, when a conceptual specification changes its dynamic states, this change
may lead to the changes of dynamic states of other conceptual specifications, which
has the interrelationship with that conceptual specification.

For instance, “when a conceptual specification of a hyperclass becomes Valid, it is
assured that the all its sub-hyperclasses, attributes, and keys must be in Valid dy-
namic state”.

The impact as mentioned above can be implemented using coordination rules. In
other words, to support the coordination of object life cycles of generic hyperclasses,
the ISIS needs to guarantee the coordination rules, which represent the impact of the
changes of dynamic states of objects of generic hyperclasses.

For instance, the next table presents the coordination rules related to the Hyperclass
generic hyperclass. Those coordination rules concerns with the coordination of dy-
namic states of objects of Hyperclass and its dependent generic hyperclasses (such as
Sub-hyperclass, Attribute and Key).

Table 2: Coordination rules concerning the coordination of objects of the Hyper-
class generic hyperclasses with objects of other generic hyperclasses.

Rule Generic Description
hyperclass

S Cn#l Hyperclass If a hyperclass is in Valid state then its sub-hyperclasses,
attributes, and keys must be also in Valid state.

S_Cn#2 Hyperclass If a hyperclass is in Invalid state then its parent hyperclass is
also in /nvalid state.

S Cn#3 Hyperclass If a hyperclass is in Completed state then its sub-hyperclasses,
attributes, and keys must be in Completed state.

S_Cn#4 Hyperclass If a hyperclass is in Uncompleted state then its parent hyper-
class is in Uncompleted state.

5.2 Inter-IS coordination

Inter-1S coordination concerns with common conceptual specifications, which re-
flect the interdependences between different responsibility zones. These interdepend-
ences can be represented by overlap situations and overlap situations are operated by
overlap protocols.

An overlap situation occurs when there is at least one class or one process is
common to several RZs. There are three types of overlap situations:
e Distinct: there is no common class and no common process between RZs.
e With borders: there are common classes, but no common process.
e With overlaps: there are common classes, and common processes, which per-
form operations on those common classes.

An overlap protocol is a protocol that allows a RZ to perform its own processes
locally and to monitor the processes in other RZs, which can influence its own proc-
esses.

In fact, an overlap protocol includes a set of semantics, rules, and formats that con-
duct the coordination of different RZs. At the time being, we propose the following
categories of overlap protocols:

® Ownership-based overlap protocol appoints which RZ would play the role of
the owner for each common object. The owner of an object takes the responsi-
bility for defining, developing and maintaining it. The other RZs may commu-
nicate to the owner to obtain information about this object.

e Service-based overlap protocol appoints which RZ would play the role of the
provider for each common object. The provider of an object takes the respon-
sibility for providing services related to this object. This protocol allows other
RZs to send a request to perform a process to the provider. Normally, the pro-

vider will perform the requested process and return the result to the requested
RZ.

e Watch-based overlap protocol allows a RZ to monitor the consequences when
other RZs performed a process, which is overlapped between them. Indeed,
each RZ plays the role of the co-owner for each common object.

6. Conclusion

In this paper, we have shown up the important of a new infrastructure based on the
Information System upon Information Systems (ISIS), which supports interoperability
of information systems in development. We also proposed a conceptual framework for
building and managing the ISIS based on conceptual specifications.

The contribution of our work is to provide a unique and coherent framework to rep-
resent, coordinate and validate conceptual specifications of information systems. The
perspective of this work is to provide an effective architecture that would be best
suited for the interoperability of existing tools and systems used in IS development
based on conceptual specifications.

In future work, we will focus our research on designing and building a tool that
supports the development of the ISIS, in particular the modelling phase. This tool will
help the IS professionals to adapt and to build their own ISIS conforming to their
enterprise. For instance, they can define and represent different categories of specifi-
cations conforming to their development methods, and select the overlap protocols
conforming to their culture, organization styles, and existing technologies.

References

1. M. Stonebraker, “Integrating Islands of Information”, EAI Journal, Sept 1999.

2. Th. Estier, G. Falquet, J. Guyot, and M. Léonard, “ Six Spaces for Global Information Sys-
tems Design ”, Proc. of IFIP Working Conference on The Object-Oriented Approach in In-
formation Systems, Québec, Canada, October 1991

3. Th. Estier, "Intégration des spécifications dans la conception des systemes d'information,
These de doctorat de I'Université de Genéve, Faculté des Sciences Economiques et Sociales,
1996.

4. T.Le Dinh, “Information System upon Information System: A conceptual framework*, Ph.D
thesis, No 577, Faculté des Sciences Economiques et Sociales, University of Geneva, 2004.

S. Slim Turki, , "Hyperclass: Towards a new kind of independence of the method from the
schema", ICEIS, Ciudad Real Spain, 2002.

6. M. Léonard, “Information System Engineering getting out of classical System Engineering”,
keynote lecture, 5th ICEIS, Angers — France, April 2003.

7. J.L. Peterson, "Petri net theory and the modeling of systems", Prentice Hall, 1981.

