
Ontology-based Semantic Interoperability Tools

for Service Dynamic Discovery ⋆

D. Bianchini and V. De Antonellis

University of Brescia
Dept. of Electronic for Automation

Via Branze, 38
25123 Brescia - Italy

bianchin|deantone@ing.unibs.it

Abstract. Enterprises and networked enterprises need today effective
communication and exchange of distributed data and services under dy-
namic and context-dependent requirements. Semantic interoperability is
considered a key issue to enforce dynamic discovery and composition of
distributed data and services. In this paper we specifically address the
problem of service discovery and we present an ontology-based approach
for dynamic discovery in a highly variable environment when cooperative
enterprises interoperate to dynamically combine available services select-
ing the best possible offers in a given moment. The ontology structure
and its deployment are discussed.

1 Introduction

Enterprises and networked enterprises require advanced semantic interoperabil-
ity methods and tools to enable cooperation and communication at application
level. In particular, semantic interoperability techniques are being proposed to
support data and service discovery and sharing [14]. Current approaches for ser-
vice discovery address the treatment of dynamical aspects both with respect to
the continuous addition and removal of services in a highly variable environment
and with respect to different contexts in which a service could be invoked [5, 6].
Other works stressed the possibility of using Description Logics to implement
matching algorithms and reasoning procedures to enhance service discovery [7,
13]. Ontologies are considered as an enabling technology for the Semantic Web
and methods and tools for ontology definition are being studied for interoper-
ability purposes. The use of ontology during service search allows for scalability
of the systems when a large number of services is considered. In [2] a service
retrieval approach based on the use of ontologies is presented. In [15] a service
ontology specifies a domain, a set of synonyms to allow a flexible search for the

⋆ This work has been partially supported by the MAIS (Multichannel Adaptive In-
formation Systems [10]) FIRB Project funded by the Italian Ministry of Education,
University and Research, and by NoE INTEROP [9] IST Project n. 508011 - 6th EU
Framework Program.



domain and a set of service classes to define the properties of services, further
specified by its attributes and operations. The service ontology also specifies a
service quality model that is used to describe non functional aspects. In [4] a
new technique for Web service discovery which features a flexible matchmaking
by exploiting DAML-S ontologies is proposed.

In this paper we specifically address the problem of service discovery and we
present an ontology-based approach for dynamic discovery in a highly variable
environment when cooperative enterprises interoperate to dynamically combine
available services selecting the best possible offers in a given moment. With
respect to existing approaches to ontology-based service discovery, original con-
tribution of our approach regards: (i) the ability of abstracting service character-
istics from their operating environment to be able to dynamically select services
on the basis of contextual features; in fact, our ontology has a three-layer archi-
tecture with different abstraction levels properly exploited to scale service dis-
covery; (ii) the possibility of selecting services through semantic-based matching
algorithms according to a scored mechanism taking into account semantic rela-
tionships among services. The aim of the present work is to present how the use
of an ontology-based approach can support service dynamic discovery and se-
lection. We propose an approach in which an ontology-based service description
is used as a basis for providing service retrieval in an enhanced UDDI Registry.
Instead of associating semantic information directly to services, semantic infor-
mation is extracted from published services on the basis of a domain ontology
and used as a basis to provide advanced searching functionalities.

The paper is organized as follows: in Section 2 we propose a three-layer service
ontology architecture; in Section 3 we present a logical framework for service
ontology representation; in Section 4, service discovery based on the proposed
ontological framework is discussed and in Section 5 the architecture underlying
our work is presented. Finally, conclusions are discussed in Section 6.

2 The Service Ontology Model

The proposed service ontology architecture organizes services at different layers
of abstraction according to proper semantic relationships [3]. Semantic relation-
ships, as explained in the next section, are the basis for a semantic searching
engine, to improve traditional service discovery mechanisms (mainly based on
keyword-driven search) with more sophisticated retrieval modalities based on
reasoning services. Basic components in our approach are:

– a set of concrete services, described by means of their WSDL interfaces, one
or more concrete bindings (for example, SOAP or HTTP binding) and one
or more endpoints (that is, the physical localization of the concrete service);
the service WSDL interface is described by means of the name of the service
itself, the names of its operations and the names of inputs and outputs for
each operation;

– an UDDI Registry, where concrete services are classified in terms of standard
available service classifications (for example, UNSPSC or NAICS); UDDI



Registry offers searching utilities that are mainly keyword-based; one of the
aims of our work is to maintain backward compatibility with these existing
technologies and their searching functionalities;

– a domain ontology, where concepts used for operation and I/O entity names
are organized by means of semantic relationships, i.e., subsumption and equiv-
alence; a weight is assigned to each kind of semantic relationship in the
domain ontology.

The conceptual model of the ontology is shown in Figure 1. The service ontol-
ogy contains concrete services, abstract services and subject categories, organized
into three layers (called Concrete, Abstract and Category layer, respectively).

– Concrete services are directly invocable services and they are featured by
their public WSDL interface, which is used to group them on the basis of
their functional similarity (as explained in the following), and by bindings
to specific implementations.

– Abstract services are not directly invocable services, but represent the capa-
bilities of sets of similar concrete services; abstract service capabilities are
also described by means of a WSDL interface and are obtained from the con-
crete service operations by means of an integration process; mapping rules
are maintained among the abstract capabilities and the original concrete op-
erations; abstract services are related to each other by two kinds of semantic
relationships: (i) specialization/generalization, when an abstract service of-
fers at least the same functionalities of another one; (ii) composition, when
the functionalities offered by a single abstract service can be provided also
by a group of other abstract services, considered in their totality; in this
case, the first services is often called the composite service, while the other
ones are called the component services.

– Subject categories organize abstract services into a standard available tax-
onomy (such as unspsc or naics) to provide a topic-driven access to the
underlying abstract and concrete services.

The three-layer service ontology is intended to enhance finding of generic ser-
vices (abstract services) describing the required capabilities that can be actually
provided by several specific existing services (concrete services). Thus, abstract
services are intended to shorten the way towards a variety of alternative concrete
services that can be invoked. Both abstract and concrete services are described
by means of a functional description, that is, a set of capabilities (for the ab-
stract service) or operations (for the concrete ones) with required inputs and
provided outputs. Context information and quality requirements can be further
considered to refine and filter the set of candidate concrete services. In addition,
subject categories give the user a mechanism for an easy access to the underlying
levels on the basis of standard topics.

Example 1 - Figure 2 shows a portion of three-layer service ontology in
tourism domain.



Fig. 1. Conceptual model of three layer service ontology.

Fig. 2. A portion of three-layer service ontology in tourism domain.



3 A Description Logic for representing services in the

ontology

In order to enhance semantic interoperability, Description Logics have been
adopted for representing services in the ontology and for reasoning in service dis-
covery. Description Logics are knowledge representation formalisms with enough
expressiveness and inference procedures that are sound, that is, the termination
of the reasoning algorithms is guaranteed. We consider the SHOIN (D) Descrip-
tion Logic, that is the logical formalism to which the OWL DL ontology language
(a sub-language of OWL [11]) can be mapped directly [8]. We choose OWL DL
as the representation language for the service and domain ontologies because of
the expressiveness of its constructs and for the readability of its abstract syntax
influenced by frame-based languages. SHOIN (D) allows for the definition of
concepts and roles, defined on a domain D [1].

We start from a set of concept names (that are names of services and opera-
tions), each of them denoted by the letter A, a set of individual names, each of
them denoted by the letter i and a set of role names, each of them denoted by
the letter R; a concept C can be defined recursively as follows:

– a concept name A is a concept (called atomic concept);

– an enumeration of individuals {i1, i2, . . . in} is a concept;

– given two concepts C1 and C2, C1 ⊓C2 (conjunction), C1 ⊔C2 (disjunction),
¬C and (C) are concepts;

– ∃R.C (existential role restriction) and ∀R.C (universal role restriction) are
concepts.

Moreover, the universal (⊤) and empty concept (⊥) are defined. In SHOIN (D)
it is possible to define:

– terminological equivalence (A1 ≡ A2) between atomic concepts;

– transitivity of the role R (Tr(R));

– inclusion (C1 ⊑ C2) and disjointness (C1 ⊑ ¬C2) between concepts to ex-
press intentional knowledge about them;

– the inverse role R−;

– not qualified cardinality constraints, that is, ≤ nR (which stands for ∃≤n y R(x, y)),
≥ nR (which stands for ∃≥n y R(x, y)) and = nR (which stands for ≤
nR ∩ ≥ nR).

We define an ontology ONT as a set of assertions on concepts used to for-
malize abstract and concrete services (as explained in the next section).

The semantics of concepts is defined by an interpretation I = (∆I , •I),
consisting of an abstract domain ∆I and an interpretation function •I ; given an
atomic concept A, a role name R with arity n, a set of individuals {i1, i2, . . . in},
two generic concepts C1 and C2, we have:



AI ⊆ ∆I

RI ⊆ (∆I)n

iI ∈ ∆I

({i1, i2, . . . in})I = {(i1)I , (i2)
I , . . . (in)I}

(C1 ⊓ C2)
I = (C1)

I ∩ (C2)
I

(C1 ⊔ C2)
I = (C1)

I ∪ (C2)
I

(¬C)I = ∆I − CI

(∃R.C)I = {c ∈ ∆I | ∃d ∈ ∆Is.t.(c, d) ∈ RI ∧ d ∈ CI}
(∀R.C)I = {c ∈ ∆I | ∀d ∈ ∆Is.t.(c, d) ∈ RI ⇒ d ∈ CI}
(≤ nR)I = {x s.t. |{y.〈x, y〉 ∈ RI}| ≤ n}
(≥ nR)I = {x s.t. |{y.〈x, y〉 ∈ RI}| ≥ n}
(= nR)I = {x s.t. |{y.〈x, y〉 ∈ RI}| = n}

(R−)I = (RI)−

(Tr(R))I = (RI)+

The empty concept is mapped to the empty set, while the universal concept
is mapped to ∆I . An assertion A1 ≡ A2 is satisfied by an interpretation I if
(A1)

I = (A2)
I ; an assertion C1 ⊑ C2 is satisfied by I if (C1)

I ⊆ (C2)
I ; an

assertion C1 ⊑ ¬C2 is satisfied by I if (C1)
I ∩ (C2)

I = ∅. An interpretation
I that satisfies all the assertion in ONT is called a model for ONT ; a generic
concept C is satisfiable in ONT if ONT allows for a model I such that CI 6= ∅;
ONT logically implies an assertion between generic concepts if, for each model
I of ONT , the application of I to the assertion is satisfiable.

3.1 Service description

We consider the chosen Description Logic to represent the functional descrip-
tion of abstract and concrete services. To do this, we do not exploit the full
expressiveness of SHOIN (D), but we make a limited use of its constructs. We
consider subsumption, conjunction, disjunction and negation of atomic and com-
plex concepts and existential restriction; in particular, we use four specific roles:
the role hasCategory to express the association link of a service with a subject
category, the role hasOperation to express the relationship of a service with its
operations or capabilities and the role hasInput (resp., hasOutput) to specify
that a given concept is the input (resp., the output) of an operation.

We describe the functional description of a service Sk as a conjunction of the
following parts:

– an atomic concept, to represent the service name we denote it as Name(Sk);
– a conjunction of concepts of the form ∃hasCategory.C, where C is a con-

junction of concept names, to represent the associated subject categories; we
denote such conjunction as Categories(Sk);

– a conjunction of concepts of the form ∃hasOperation.OP , where OP is
a concept representing an operation of the current service; we denote such
conjunction as Operations(Sk); each operation OP is described as the con-
junction of:



• an atomic concept, to represent the operation name; we denote it as
Name(OP );

• a concept of the form ∃hasInput.I, where I is a conjunction of atomic
concepts representing the inputs of the operation; each concept could also
be defined as an enumeration of individuals in the form ∃R.ℓ, where R is
the name of the input and ℓ = {i1, i2, . . . in} is the optional enumeration
of individuals; we denote the set of such concepts as Inputs(OP );

• a concept of the form ∃hasOutput.O, where O is a conjunction of atomic
concepts representing the outputs of the operation; each concept could
also be defined as an enumeration of individuals; we denote the set of
such concepts as Outputs(OP ).

Moreover, to distinguish among abstract and concrete services, we add to the
conjunction a new concept of the form ∃hasType.C, where C is an atomic con-
cept abstractService or concreteService. Finally, for each abstract service
we can add a concept of the form ∃hasConcrete.CS, where CS is a conjunc-
tion of concepts corresponding to the names of concrete services associated to
the abstract one.

Example 2 - If we consider the abstract service ReserveFlight in Figure 2,
the following new concept is added to the ONT knowledge base:

ReserveFlight ⊓ ∃hasCategory.AirTransfer ⊓
∃hasOperation.(searchFlight ⊓ ∃hasInput.(departureCity ⊓

arrivalCity ⊓ departureTime ⊓ arrivalTime) ⊓
∃hasOutput.flightTicket) ⊓

∃hasOperation.(bookFlight ⊓ ∃hasInput.flightTicket ⊓
∃hasOutput.bookingConfirmation) ⊓ ∃hasType.abstractService ⊓

∃hasConcrete.(KLM ⊓ Alitalia ⊓ Lufthansa)

Semantic relationships among abstract services (specialization/generalization
and composition) are represented by means of subsumption (⊑) and disjunction
(⊔) constructs, that is:

– if an abstract service Sa1 is a specialization of another one Sa2, then we add
Sa1 ⊑ Sa2 to ONT ;

– if an abstract service Sa1 is composed by a set of abstract services Sa2, Sa3,
. . . San, then we add Sa2 ⊔ Sa3 ⊔ . . . ⊔ San ⊑ Sa1 to ONT .

Example 3 - In the service ontology shown in Figure 2 we have:

ReserveFlight ⊔ ReserveHotel ⊑ ReserveAirTravel

ReserveLowCostFlight ⊑ ReserveFlight

3.2 Service request description

We represent a functional request R as well as the functional description of a
service, with the only difference that in the request R the specification of re-



quired subject categories could be optional.

Example 4 - We consider the request of a flight booking service for a trip from
Milan or Venice to Rome that allows for payment by credit card. The required
capabilities will be two: the first one to book a flight, inserting departure and
arrival city (defined by enumeration) and receiving the flight ticket, the second
one to pay the flight by credit card, inserting card information and receiving a
receipt via e-mail. The request R will be represented as follows:

∃hasCategory.(AirTransfer ⊓ TravelService) ⊓
∃hasOperation.(flightBooking ⊓

∃hasInput.(∃departureCity.{Milan,Venice} ⊓
∃arrivalCity.{Rome}) ⊓

∃hasOutput.flightTicket) ⊓
∃hasOperation.(paymentByCreditCard ⊓

∃hasInput.(creditCardHolder ⊓
creditCardExpiration ⊓ creditCardNumber) ⊓

∃hasOutput.(∃paymentReceipt.{email})

4 An ontological infrastructure for service discovery

In this section we show how to exploit the proposed ontological infrastructure to
enhance service discovery by means of a matching and ranking algorithm that
finds desired concrete services according to a set of functionalities required by
the user (that is, a request R) and ranks them with respect to their degree of
similarity with R. First of all, we give the definition of similarity coefficients
useful for matching a request R and an abstract service Sai. Then, we present
our matching and ranking algorithm for service discovery.

4.1 Functional similarity coefficients

The functional similarity analysis is supported by the domain ontology used to
annotate I/O entities and operation names, where concepts are organized by
means of weighted semantic relationships (equivalence with weight equal to 1,
subsumption with weight equal to 0.8).

The domain ontology is organized as a graph 〈N , E〉, where N is the set of
nodes (i.e., concepts) and E the set of edges (i.e., semantic relationships between
nodes). Each edge is represented in the form 〈(nh, nk), t, w〉, where nh ∈ N is
the source node, nk ∈ N is the destination node, t is the kind of relationship and
w ∈ (0, 1] is the weight associated to that kind of relationship. We call path p

between two nodes n, n′ ∈ N a finite ordered sequence 〈e1, e2, . . . en〉, where the
source node of e1 is n and the destination node of en is n′. Between two nodes
in the ontology there can exist more than one path. We define P ⊆ 2E the set of
all possible paths in the ontology. The strength of a path p ∈ P is the value of
the function W : P → (0, 1] that associates to p the product of the weights of all



the relationships belonging to it. We say that two terms n and n′ have affinity
(n ∼= n′) if:

– there exists at least one path in the ontology between n and n′;
– the strength of this path is greater or equal to a given threshold; if there

exist more than one path, the one with the highest strength is chosen; the
affinity value A(n, n′) ∈ (0, 1] is equal to the strength of the path.

Given a request R and an abstract service Sai, we consider each pair of
operations opR and opi, one from R and one from Sai. The similarity between
opR and opi is evaluated considering the domain ontology, that is,

OpSim(opR, opi) = A(nR, ni) ∈ (0, 1] (1)

where nR and ni are the concepts associated to the names of opR and opi. If a
path of relationships does not exist among nR and ni names, OpSim(opR, opi) =
0. If OpSim(opR, opi) 6= 0, then also similarity among I/O entities is verified
exploiting the domain ontology through the formula

ESim(opR, opi) =
2 · Atot(IN(opR), IN(opi))

| IN(opR) | + | IN(opi) |
(2)

+
2 · Atot(OUT (opR), OUT (opi))

| OUT (opR) | + | OUT (opi) |
∈ [0, 1]

where Atot represents the total value of affinity between the pairs of I/O entities,
one from opR and one from opi (obtained by summing up the affinity values of
all the pairs of I/O entities with affinity) and | | denotes the cardinality of a
given set of I/O entities; the higher the number of pairs of entities with affinity,
the higher the value of ESim(opR, opi).

The affinity evaluation between inputs and outputs must consider both as-
sociated concept names and optional enumerated values. For example, if we
consider two input entities I1 and I2 defined as ∃n1.ℓ1 and ∃n2.ℓ2, respectively,
where n1 and n2 are concept names, ℓ1 and ℓ2 are enumerations of individuals,
we firstly evaluates A(n1, n2), then we verify if for at least one of the two inputs
ℓ is defined; in such a situation, if ℓ1 ≡ ℓ2 then we put A(n1, n2) := A(n1, n2)∗1,
else if ℓ1 ⊑ ℓ2, then we put A(n1, n2) := A(n1, n2) ∗ 0.8. If ℓ is defined for only
one input, for the other one it is interpreted as “all possible values accepted”.

For each pair of operations, a global similarity coefficient GSim(opR, opi) is
evaluated through a weighted sum of the values of ESim(opR, opi) and
OpSim(opR, opi):

GSim(opR, opi) = α · ESim(opR, opi) + β · OpSim(opR, opi) ∈ [0, 1] (3)

The weights α and β, with α, β ∈ [0, 1] and α + β = 1, are properly set
to assess the desired relevance of each kind of similarity, depending on flexible



comparison strategies (generally, α = β = 0.5). Two operations opR and opi are
globally similar if the value of GSim(opR, opi) is equal or greater than a given
threshold λ.

Finally, the degree of functional similarity between a request R and an ab-
stract service Sai is computed as the ratio among the sum of GSim values for
each pair of globally similar operations in R and Sai and the total number of
required operations:

FSimR(R, Sai) =

∑
s,t GSim(opR, opi)

| operations in R |
(4)

for each opR of R and for each opi of Sai such that GSim(opR, opi) ≥ λ.

Given a threshold φ, if FSimR(R, Sai) ≥ φ then we can assess functional
compatibility, that is, isCompatible(R, Sai).

We pose two main assumptions, derived from the meaning of semantic re-
lationships between abstract services; the first one asserts that, if an abstract
service Sa1 is a specialization of another one Sa2 and Sa2 satisfies the user
request R, then also Sa1 satisfies R, that is

if ONT |= Sa1 ⊑ Sa2 ∧ isCompatible(R, Sa2) then isCompatible(R, Sa1)

The second assumption asserts that, if an abstract service Sa1 is composed
by a set of abstract services Sa2, Sa3, . . . San and Sa1 satisfies the user request
R, then R is also satisfied by the overall set {Sa2, Sa3, . . . San}, that is

if ONT |= (Sa1 ≡ Sa2 ⊔ Sa3 ⊔ . . . ⊔ San) ∧ isCompatible(R, Sa1) then

isCompatible(R, Sa2 ⊔ Sa3 ⊔ . . . ⊔ San)

4.2 The FC-MATCH algorithm for service discovery

The algorithm is organized in four main phases as shown in Figure 3. During
the first one (rows (9)-(16)) subject categories optionally specified in the request
are used to reduce the set of candidate abstract services: only abstract services
that are associated to at least one selected subject category (marked(Sai) in the
algorithm) are further considered for the evaluation of their functional compat-
ibility with the request. If no subject categories are specified, then all abstract
services are considered in the next phase.

In the second phase (rows (17)-(23)), candidate abstract services are com-
pared with the request R to evaluate their degree of functional compatibility
with R. Only abstract services Sai for which FSimR(R, Sai) is equal or greater
than a given threshold φ are further considered.

In the third phase (rows (24)-(29)) semantic relationships between abstract
services are exploited to make more efficient selection of candidate abstract ser-
vices, according to assumptions presented in Section 4. This phase can reduce



(1) Algorithm FunctionalCompatibilityMatch
(2) Input service ontology ONT , a request R, a threshold φ

(3) Output a set CSC of pairs (Sci, score(Sci)), where Sci are concrete
services returned to the user, ranked with respect to score(Sci)

(4) AS := set of available abstract services //initialization
(5) foreach Sai ∈ AS
(6) score(Sai) := 0;
(7) ASC := ∅ //set of candidate abstract services
(8) CSC := ∅

(9) if Categories(R) 6= ∅ //category level filtering (optional)
(10) foreach Sai ∈ AS
(11) foreach Cath ∈ Categories(R)
(12) if Cath ∈ Categories(Sai) then mark Sai

(13) if marked(Sai) then

(14) add Sai to ASC;
(15) remove Sai from AS;
(16) else ASC := AS //if no categories are specified, all available abstract

//services are candidate services

(17) AS := ASC; //maintain only abstract services associated to the
//selected categories, if specified

(18) ASC := ∅;
(19) foreach Sai ∈ AS //functional similarity evaluation
(20) if FSimR(R, Sai) ≥ φ then

(21) score(Sai) := FSimR(R, Sai);
(22) add Sai to ASC;
(23) remove Sai from AS;
(24) foreach Saj 6= Sai such that ONT |= Saj ⊑ Sai then

//exploitation of specialization relationships between
//abstract services

(25) score(Saj) := score(Sai);
(26) add Saj to ASC;
(27) remove Saj from AS ;
(28) foreach {Saj} 6= Sai such that ONT |= (⊔{Sai} ⊑ Sai) then

//exploitation of composition relationships between
//abstract services

(29) score{Saj} := score(Sai);
(30) add {Saj} to ASC;
(31) remove {Saj} from AS;
(32) else remove Sai from AS ;

(33) foreach Sai ∈ ASC then //mapping from the abstract to the concrete world
(34) foreach Sck ∈ concretes(Sai)
(35) score(Sck) := score(Sai);
(36) add (Sck, score(Sck)) to CSC;

(37) return CSC ranked with respect to score(Sci);

Fig. 3. The FC-MATCH algorithm.



Fig. 4. The compat system architecture.

the set of abstract services for which the evaluation of FSimR(R, Sai) coefficient
is needed, decreasing the complexity of the algorithm.

Finally, concrete services associated to the selected abstract ones are returned
to the user, ranked according to the degree of their functional compatibility with
the functional requirements (rows (31)-(35)). Future work will address further
refinement of the set of concrete services taking into account contextual infor-
mation and QoS issues. In such a case, the value of score(Scj) of each selected
concrete service Scj will be further modified according to contextual and QoS as-
pects. Notice that we addressed scalability purposes by exploiting the three-layer
structure of the service ontology (we progressively reduce the set of candidate
services by considering the organization of services into subject categories and
abstract services) and semantic relationships between abstract services.

5 The compat system architecture

Figure 4 shows the proposed architecture for the compat ontology-based sys-
tem to enhance service discovery according to compatibility degree. The core
elements of the architecture are the Compatible Service Provider, the JENA

API and the JENA DIG Interface. The Compatible Service Provider imple-
ments the matching algorithm presented in Section 4 to find available concrete
services with respect to the user requests. The Compatible Service Provider

does not access directly the ontology, but it uses the JENA API, a Java inter-
face that includes a subsystem for management of ontologies supporting OWL,



DAML+OIL and RDF. JENA uses an internal model to represent ontologies, on
which it is possible to add a plug-in to perform reasoning tasks. An automatic
reasoner, RACER [12], has been developed to implement reasoning tasks on
SHOIN (D); it can be used by means of the Jena DIG-HTTP interface. The
Compatible Service Provider satisfies the request of a service both from a
human user, that can interact with the system by means of a Graphical User

Interface (GUI), implemented using Java Servlet and Java Server Pages tech-
nologies, and directly from a software application to automate service selection
and discovery.

6 Conclusions

In this paper we have addressed the problem of semantic interoperability in
service discovery to support enterprises in dynamically selecting the best possible
offers in a given moment. We have proposed a service ontology architecture and
a matching algorithm to exploit it in order to find concrete services according to
a given service request. We have also proposed a mechanism to rank the resulting
set of concrete services. In this paper we have considered only functional aspects
of services, while future works will address also a QoS-based and context-aware
selection of concrete services. The basic idea is to take into consideration QoS
and contextual aspects to filter concrete services selected by the FC-MATCH
algorithm. Negotiation techniques could also be considered in this phase. At
the moment, a prototype of the architecture shown in the previous section and
the experimentation in the domain of touristic information services are being
completed.

References

1. F. Baader and P. Hanschke. A schema for integrating concrete domains into con-
cept languages. In Proc. of the IJCAI 1991, pages 452–457, 1991.

2. A. Bernstein and M. Klein. Towards High-Precision Service Retrieval. In Proc. of
the International Semantic Web Conference (ISWC 2002), pages 84–101, Sardinia,
Italy, June 9-12th 2002.

3. D. Bianchini, V. De Antonellis, B. Pernici, and P. Plebani. Ontology-based Method-
ology for e-Service discovery. Accepted for publication on Journal of Information
Systems, Special Issue on Semantic Web and Web Services, 2004.

4. A. Brogi, S. Corfini, and R. Popescu. Flexible Matchmaking of Web Services Using
DAML-S Ontologies. In Proc. Forum of the Second Int. Conference on Service
Oriented Computing (ICSOC 2004), New York City, NY, USA, November 15-19th
2004.

5. F. Casati, M. Castellanos, U. Dayal, and M. Shan. Probabilistic, Context-Sensitive
and Goal-Oriented Service Selection. In Proc. of the Second Int. Conference on
Service Oriented Computing (ICSOC 2004), pages 316–321, New York City, NY,
USA, November 15-19th 2004.

6. I. Elgedawy, Z. Tari, and M. Winikoff. Exact Functional Context Matching for Web
Services. In Proc. of the Second Int. Conference on Service Oriented Computing
(ICSOC 2004), pages 143–152, New York City, NY, USA, November 15-19th 2004.



7. J. Gonzalez-Castillo, D. Trastour, and C. Bartolini. Description logics for match-
making of services. Technical report, HPL-2001-265, Hewlett-Packard, 2001.

8. I. Horrocks and P. Patel-Schneider. Reducing OWL entailment to Description
Logic satisfiability. In Proc. of the 2nd International Semantic Web Conference
(ISWC2003), Sanibel Island, Florida, USA, October 2003.

9. The INTEROP NoE Portal. http://www.interop-noe.org/.
10. The MAIS Project Home Page. http://black.elet.polimi.it/mais/index.php.
11. D. L. McGuinness and F. van Harmelen. OWL Web Ontology Language Overview.

World Wide Web Consortium (W3C) Recommendation, February 10th 2004.
http://www.w3.org/TR/2004/REC-owl-features-20040210/.

12. The Racer Home Page. http://www.sts.tu-harburg.de/ r.f.moeller/racer/.
13. B. Motik S. Grimm and C. Preist. Variance in e-Business Service Discovery.

In Proc. of the Third International Semantic Web Conference (ISWC 2004), Hi-
roshima, Japan, November 8th 2004.

14. HP - Web Services concepts. A technical overview.
http://www.bluestone.com/downloads/pdf/web services tech overview%w.pdf.

15. L. Zeng, B. Benatallah, M. Dumas, J. Kalagnanam, and H. Chang. QoS-Aware
Middleware for Web Services Composition. IEEE Transactions on Software Engi-
neering, 30(5):311–327, 2004.


