

A Framework towards Web Service Composition

Modeling and Execution

Muhammad Adeel Talib, Zongkai Yang

Electronic & Information Engineering Department,
Huazhong University of Science & Technology,

Wuhan, Peoples Republic of China
matalib@gmail.com; zkyang@public.wh.hb.cn

Abstract. The biggest challenge of business process management is the provi-
sion of non-technical tools, based on implementation standards, which swing
control of business processes away from technical departments and towards the
business process owners themselves. These tools aid business users in design-
ing high level process models using graphical notations which can then be
mapped to lower level implementation models for execution. In this paper we
propose our framework leading to a tool that aids business user in designing
Web service based process (or in other words, Web service compositions) in
BPEL4WS. We elaborate what information is required from the user in order to
model the composition and how the technological details can be hidden from
her. It is our conjecture that such tool will facilitate Web service composition
design and development by giving an upper hand to business users – the people
who actually conceptualize the processes.

1 Introduction

Used together, business process management and service-oriented architecture can
form a dynamic combination that leverages the agility and extends the capabilities of
both technologies. In this arena individual Web services are federated into composite
services with value added functionality. Organizations can encapsulate their business
functions as Web services and create virtual processes that interact with other organi-
zations’ processes. The interaction logic is specified as an XML based business proc-
ess language. One such candidate language that seems to have attracted the most
attention at the moment is the Business Process Execution Language for Web Ser-
vices (BPEL4WS or BPEL in short) [1] that was originally drafted by BEA, IBM and
Microsoft and which is now being formalized by a committee at OASIS. Though the
language is still going through refinement with its new version under planning phase,
it has gained a lot of attraction and support from the industry and has become the de
facto standard [2].

According to the BPEL specification, BPEL defines a model for describing the be-
havior of a business process based on interactions between the process and its part-
ners. This statement creates a misconception that BPEL is a business process model-
ing language. It is rather an execution language [business process modeling and stan-
dardization]. Like other XML based languages, it is of textual form and contains
complex constructs and not so easy semantics. Business operations people are used to
flow diagrams and other graphical notations instead of textual notations. BPEL at-
tempts to offer the best by introducing a flow construct and using links to create
‘arbitrary’ flow dependencies between the activities contained within the flow con-
struct. However, the semantics relies on a complicated formulation which tests and
propagates the status of links. This makes it difficult for a business user, who actually
conceptualizes the process, to model the process in it. There is a need to develop a
methodology in order to assist the business analyst, who is not a technology expert, to
model process compositions. Our aim is to develop a tool that captures the explicitly
required information about a composition from the business modeler while at the
same time hiding the technological details from her.

In this paper, we have briefly describe our proposed framework that can capture
high level process composition requirements in an abstract way and then automati-
cally transforms the high level process design model into low level process execution
model i.e. BPEL. We identify various concepts of BPEL metamodel and see how
these can be captured with abstraction from the user being a major concern.

Rest of the paper is organized as follows: First of all we present the related work in
Section 2 as it gives an idea about the significance of our work. In Section 3 we list
various concepts which are required to be captured in order to produce a Web service
composition. Then in Section 4 we briefly discuss our proposed framework and de-
scribe how it facilitates the business user in capturing the BPEL semantics. Finally we
conclude in Section 5 along with future work.

2 Related Work

BPEL as well as other process composition languages are of textual form and the
specifications written in them are difficult to understand and visualize [3]. Towards
this end various graphical specifications have been proposed to model Web service
compositions that sit on top of BPEL in the technology stack. These tend to reduce
the design complexity by provided graphical representations. Authors in [4] describe
a UML profile and transformation rules that can be used to produce UML models of
Web service compositions. The operation signatures are modeled as UML class
model and the behavior is modeled in UML activity diagram thus producing a new
service model. [5] present a similar UML profile and mapping rules to BPEL. Al-
though these UML based modeling techniques provide a helping hand to developers
to model applications, they do not abstract away the syntactic details from the user.
The user still has to acquire sound knowledge of the underlying specifications as well
as the graphical notations along with their usage scenarios. Besides, as quoted in [6],
the gap between UML and BPEL is very large which makes the mapping quite com-
plex.

BPMI has recently proposed a language – Business Process Management Notation
(BPMN) [7] which provides graphical constructs with mapping to BPEL. Numerous
commercial BPEL implementations are available where the vendors provide visual
designing tools such as BPWS4J from IBM and BPEL Server from Oracle. In both
cases either the user is bound to learn a new graphical language or should have sound
knowledge of BPEL constructs. [8] present an approach to visually model Web ser-
vices composition using Object-Process Diagrams (OPD). The paper describes a two-
way transformation from OPD to BPEL using OPD templates. Again, the approach
assumes the user is familiar with BPEL and OPDs. In contrast to UML and other
graphical modeling based solutions, we focus on relieving the user from the syntactic
details of BPEL along with the modeling notation and providing her a user friendly
graphical interface where she can design the composition in step by step manner
without any prerequisite modeling or programming skills.

Authors in [9] have proposed a template based web service composition model for
automatic code generation of business process languages. The degree to which auto-
matization of service composition is achieved depends on the availability of templates
(to the designer) that fit into the desired composition pattern. The availability of tem-
plates, in turn, depends on access to public registries for retrieval. Currently there is
no such provision and is in the future scope of the project. Our conjecture is that these
templates can provide automatic code generation only for a part of code that is re-
peatable but, cannot be used to generate the whole process flow, for that the designer
has to gain knowledge of complex design patterns. Our framework focuses on the
whole process flow design instead of partial code generation.

3 Concepts of BPEL metamodel

The full explanation of BPEL semantics is out of the scope of this paper. Here we
only discuss the concepts involved. The metamodel of BPEL incorporate the follow-
ing concepts [10] that represent the operational, behavioral, informational, organiza-
tional and transactional aspects of the language:

1. Task I/O: Task refer to basic units of work or activity. The input and output (I/O)
of these tasks may be modeled using simple or XML complex types.
2. Task Address: The address specifies where or how a service can be located to per-
form a task. The address can be modeled directly via a URI reference of a service or
indirectly via a query that identifies a service address.
3. Control Flow: The control flow defines the temporal and logical relationships
between different tasks. Control flow can be specified via directed graphs or block
oriented nesting of control instructions.
4. Data Handling: Data handling specifies which variables are used in a process in-
stance and how the actual values of these variables are calculated.
5. Instance Identity: This concept addresses how a process instance and related mes-
sages are identified. Correlation uses a set of message elements that are unique for a
process instance in order to route messages to process instances.
6. Roles: Roles provide for an abstraction of participants in a process.

7. Events: Events represent real-world changes. Respective event handlers provide
the means to respond to them in a predefined way.
8. Exceptions: Exceptions or faults describe errors during the execution of a process.
In case of exceptions dedicated exception handlers undo unsuccessful tasks or termi-
nate the process instance.
9. Transactions: Business transactions represent long-running transactions. In case of
failure the effects of a business transaction are erased by a compensation process.

Capturing these concepts of BPEL while at the same time hiding the syntactic de-
tails is not an easy task. The higher level metamodel required to do so must be busi-
ness user friendly that captures information relevant to much lower level BPEL im-
plementation model. This difficultly also implies to the automatic transformation
between the two metamodels. We advocate the use of a user friendly interactive
graphical interface instead of a graphical modeling language to capture these con-
cepts. The information is stored in a relational model (Fig. 1) which is then trans-
formed into the BPEL model automatically.

Part

Name
Type
Message

Message

Name
Variable

Parner/Client

Namew
PortTypew
ProcessPortTypew
PartnerLinkType
PartnerLink
PartnerRole
ProcessRole
WSDL locationw

Fault

Name
Message
Context
Action

Operation

Name
PortType
Input
Output
Fault

While

Name
Condition

Activity

Name
Type
JoinConditionw
CreateInstancew
Remarks

ControlFlow

Name
Contextw
Fromw
TransitionConditionw
Tow

Event

Name
Type
Context
Action

composed ofcontain

PortType

Name
PortType
Input
Output
Fault

Pick

Name
OnMessage

 iskindof
governs

iskindof

constitute

 expose

contain

 influence

throw

 constitute

constitute

iskindof

Fig. 1. Relational model which stores the composition information. The marked attributes
represent the only information provided by the user

It should be noted that only basic understanding of the concepts of BPEL is required
by the user and not its syntactic details. Hiding syntactic details from the business
user is the basic theme of our research. Our goal is to provide composition modeler
the flexibility to express less than complete detail without prerequisite high specifica-

tion knowledge. Refinement is then a natural process of adding further detail, while
still conforming to the laws of composition. The motive here is to facilitate the busi-
ness user, who does not know much detail about composition language, to construct.

4 Proposed Framework

Through the Graphical User Interface (GUI), the system captures the information
required to develop the composition from the Composition Modeler and stores it in a
Relational Repository. Knowledge about the parties involved in the collaborations,
their interface description file locations, order of activities, instance creation, correla-
tion token, etc. is captured in an incremental fashion in such a way that the modeler
remains unaware of the underlying syntax. The Inference Engine automatically infers
additional information from the user provided information using inference algorithm
(an algorithm that takes values of attributes from the relational model and deduces
other attributes). Once all information is captured, transformation rules are applied to
map from relational to BPEL metamodel/schema (the word schema is more appropri-
ate to use here as both the relational and BPEL model use schemas as their inter-
change format). This is done by the Transformation Engine. Once the code is gener-
ated, it must be validated for accuracy and verified against deadlocks. This is done
using an existing BPEL Validator. The final validated and verified BPEL file and
partner interfaces are passed on to an execution engine that executes the composition.
The architectural components of our proposed framework are shown in Figure 2.

Relational
Repository

Transformation
Engine

Composition
 modeler

partner info
control flow, etc.

Validator
generated

BPEL code

WSDL
Parser parse

store data

Partner
WSDL files

Inference
Engine

Execution
Engine

GUI
further

info data

 validated
 BPEL file

data

System

Fig. 2. Conceptual architecture of proposed framework

4.1 Information Capturing

This section describes briefly how our framework captures the BPEL concepts (given
in Section 3) keeping the user unaware of the syntactic detail and what information
can be inferred from the inference algorithm.

4.1.1 Task I/O. This information is deduced from WSDL Parser. It parses the
partner interface files provided by the user and deduces the port types exposed by the
collaborating parties, the operations offered, the messages involved and the parts of
the messages that correspond to basic or complex data types. Fig. 3 shows mapping
between the partner WSDL file and the relational model.

<WSDL file>

<definitions

 <message name="">

 <part name="" type=""/>

 </message>

 <portType name="">

 <operation name="">

 <input message=""/>

 <output message=""/>

 <fault name="" message=""/>

 </operation>

 </portType>

 <service name="">

 <port ...>

 <soap:address location=""/>

 </port>

 </service>

</wsdl:definitions>

Parts

Name
Type
Message

Messages

Name
Variable

Parners

Name
PortType
ProcessPortType
WSDL location
PartnerLinkType
PartnerLink
PartnerRole
ProcessRole

Faults

Name
Message
Context
Action

Operations

Name
PortType
Input
Output
Fault

Inference
Algorithm

Modeler

Fig. 3. Mapping from WSDL files to relational model done by WSDL parser. The figure also
shows what information is provided by the user and what is inferred from the inference algo.

4.1.2. Task Address. The task address is a URL and is also extracted from the
WSDL files from binding element.

4.1.3. Control Flow. The modeler captures the control logic with the help of simple
control rules that identify which activity has to be executed after an activity is
completed under what conditions. Structure of a control rule is as shown below:

ControlRule {

activity (messaging|basic|while|pick|event)

postActivity (messaging|basic|while|pick|event)

transitionCondition (Boolean expression)

}

Synchronization (interdependencies) among the activities is handled by BPEL link
semantics which mark the parent node as source activity and the child node as target
activity. If the target activity is guarded by a condition, the source activity will spec-
ify the transition condition. Based on this control link semantics of BPEL, the trans-
formation rules synchronize the activities in a single flow. We believe that this graph
based technique allows more abstraction as compared to structured formation of
BPEL specification, in that the modeler has to explicitly define the complex structure
of composition.

Here inference algorithm is used to decide whether a messaging activities i.e. op-
eration is associated with a receive, reply or invoke construct. The modeler just
defines the order in which the activities have to be run without knowing when to use
the BPEL messaging constructs. The use of control rules also facilitates the business
user in updating changes in the business logic without relying on the developer, pro-
viding agility against change.

4.1.4. Data Handling. The message exchange variables are deduced from the
description files of the partner interfaces. For each unique message taking part in the
collaboration, there is a unique variable. Intermediate variables used to store data
during business logic manipulation have to be defined by the user.

4.1.5. Instance Identity. Three instantiation patterns are involved during instance
creation: Single start; Multiple start with receive; and Multiple start with pick. The
modeler has to select the identified pattern according to the business logic.
Correlations are usually context-dependent and thus cannot be derived by general
rules. They have to be defined by the user. We are currently working how to abstract
the correlation constructs from the user.

4.1.6. Roles. In a business collaboration modeled by BPEL, there is a centralized
coordinating authority, the process, which interacts with other parties (i.e. partner and
client). It is important to distinguish between a partner and a client. A partner is the
party that provides services to the process. Client on the other hand gets service from
the process. It is required from the modeler only to provide the port types exposed by
the partner or client. The partnerLinkType, partnerLink, partnerRole and myRole
constructs can be deduced from the inference algorithm. The detail of the inference
algorithm is out of the scope of this paper but a snippet of the algorithm inferring the
role semantics of a partner is listed below:

for each partner involved {

PartnerLinkType = Partner.Name + ‘LinkType’

PartnerLink = Partner.Name + ‘Link’

if (Partner.PortType != null then)

PartnerRole = Partner.Name + ‘Provider’

if (Partner.ProcessPortType != null then)

MyRole = Partner.Name + ‘Requester’

}

4.1.7. Events. Events represent real-world changes and their occurrence is captured
by the control rules. The activity which is influenced by an event is encapsulated in a
scope having an event handler attached that executes the actions to be performed. The
actions to be performed are again captured with the help of control rules. The flow
thus created will be nested inside the event activity.

4.1.8. Exceptions. Our framework automatically captures the application exceptions
from the WSDL files and attaches fault handlers with the affected activities. Handling
of system exceptions and compensation is yet to be explored.

5 Conclusions and Future Work

In this paper we have presented our idea for generating BPEL code for static compo-
sition semi-automatically. First we described various aspects of BPEL to be captured
while modeling the business process choreography. We discussed what information
can be abstracted from the user and what cannot. Then we proposed a relational
model to store the captured information which is later transformed into BPEL process
specification model. We also briefly described how the relational model is populated
with information plugged in by the modeler and information derived by inference
algorithms. It is our thesis that using this approach a business user with limited BPEL
knowledge can have the capability to design complex business to business Web ser-
vice compositions.

In order to verify our concept a tool is under development. For the sake of simplic-
ity we have abstracted from the namespace issues which are an integral part of BPEL
specification. Both relational and process models have strong formal grounds (rela-
tional and process algebra). The possibility of formally transforming the relational
model into a process model is yet to be explored. Currently our framework only gen-
erates abstract composition without considering concrete bindings with the partners,
which will be a part of our future work. For now we concentrate on static composi-

tions where the modeler provides the service location information. Our framework
can be modified to handle dynamic compositions where the services are selected at
runtime. For this functionality we propose the use of a service broker that provides
the service URLs upon queries based on functional and non-functional requirements.

References

1. Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu, K., Roller,
D., Smith, D., Thatte, S., Trickovic, I., Weerawarana, S.: Business Process Execution Lan-
guage for Web Services, Version 1.1. Specification. BEA Systems, IBM Corp., Microsoft
Corp., SAP AG, Siebel Systems. May, 2003. http://www.ibm.com/developerworks/ web-
services/library/ws-bpel/

2. Harmon, P.: BPM Tools. Business Process Trends Newsletter, vol. 2, no. 4, Apr, 2004.
http://www.bptrends.com

3. Wil M.P. van der Aalst: Web service composition languages: Old wine in new bottles? In:
Proceedings of the 29th IEEE EUROMICRO Conference, pp. 298-307, Belek-Antalya,
Turkey, Sep, 2003, 298-307

4. Skogan, D., Gronmo, R., Solheim, I.: Web Service Composition in UML. In: Proceeding of
the 8th International IEEE Enterprise Distributed Object Computing Conference
(EDOC’04), California, USA, Sep, 2004, 47-57

5. Gardner, T.: UML Modeling of Automated Business Processes with a mapping to
BPEL4WS. In: Proceedings of 1st European Workshop on Object Orientation and Web Ser-
vices (EOOWS’03), Darmstadt, Germany, 2003

6. Bézivin, J., Hammoudi, S., Lopes, D., Joualt, F.: Applying MDA approach to B2B applica-
tions: A road map. Workshop on Model Driven Development (WMDD 2004) at ECOOP
2004, Oslo, Norway, Vol. 3344 of Lecture Notes in Computer Science (LNCS), Springer-
Verlag, Jun, 2004

7. White, S. A.: Business Process Modeling Notation. BPMN 1.0, Business Process Modeling
Initiative. 2004. http://www.bpmn.org

8. Yin, L., Wenyin, L., Changjun, J.: Object-Process Diagrams as Explicit Graphic Tool for
Web Service Composition. Journal of Integrated Design & Process Science: Transactions
of the SDPS, Vol. 8, No. 1, 2004, 113-127

9. Karastoyanova, D., Buchmann, A.: A Procedure for Development and Execution of Proc-
ess-based Composite Web Services. In: Proceedings of the IEEE International Conference
on Web Engineering (ICWE’04), Munich, Germany, Jul 2004, 593-594

10. Mendling, J., Neumann, G.,Nüttgens, M.: A Comparison of XML Interchange Formats for
Business Process Modelling. In: Proceedings of EMISA 2004, Luxembourg, In: Feltz, F.,
Oberweis, A., Otjacques, B., (eds.), Vol. 56 of Lecture Notes in Informatics (LNI), Oct,
2004, 129-140

